Aufgabe 1:

Geben Sie mit einer kurzen Erklärung an, ob die Aussage wahr oder falsch ist.

- a) Eine Kurve mit einer konstanten Krümmung ist eine Gerade.
- b) Sei f: $\mathbb{R} \to \mathbb{R}$, dann ist die Hesse Matrix von f symmetrisch.
- c) Ein Ausgleichsproblem mit $min_{x \in \mathbb{R}^n} ||b Ax||_2$ hat für $b \in \mathbb{R}^n$ und $A \in \mathbb{R}^{m \times n}$, $m \ge n$, immer eine eindeutige Lösung.
- d) Die Quadraturformel ist von Ordnung p, falls sie alle Polynome vom Grad höchstens p exakt integriert und mindestens ein Polynom vom Grad p + 1 nicht exakt integriert.
- e) Für die stetig differenzierbare Funktion f konvergiert das Newton Verfahren für beliebige Startwerte gegen eine Lösung.
- f) Ist $A \in \mathbb{R}^2 \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion, $N_0(f)$ eine Höhenlinie von f und $a \in N_0(f)$, dann ist grad f(a) senkrecht zum Tangetialraum von $N_0(f)$.
- g) Ist $A \in \mathbb{R}^{n \times n}$ invertierbar und $b \in \mathbb{R}^n$, so konvergiert für f(x) = Ax + b das Newton Verfahren zur Lösung von f(x) = 0 in endlich vielen Schritten für beliebige Startwerte.
- h) Die Funktion $f(x_1, x_2) = x_2 e^{x_1}$ ist für alle (x_1, x_2) mit $|x_1| \le 1$ gut koordiniert.
- i) Die Zykloide, gegeben durch $f: \mathbb{R} \to \mathbb{R}^2$, $f(t) = (1 \sin(t), 1 \cos(t))$ ist eine rektifizierbare Kurve und hat für $t \in [0, 2\pi]$ die Bogenlänge 8.
- j) Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) = x^2 y^2 + x^3$ hat im Punkt $Q\left(-\frac{2}{3},0\right)$ ein lokales Maximum.

Aufgabe 2:

Ein Kegel hat die Höhe r und einen Kreis mit dem Radius r als Grundfläche.

Berechnen Sie das Volumen durch ein Mehrfachintegral.

Aufgabe 3:

- a) Konstruieren Sie symmetrische Quadraturformel mit 2 Stützstellen auf [0,1] maximaler Ordnung.
- b) Bestimmen Sie die Ordnung dieser Quadraturformel oder begründen Sie, warum sie eine bestimmte Ordnung hat.

Aufgabe 4:

Betrachten Sie ein Ausgleichsproblem $min_{x \in \mathbb{R}^n} ||b - Ax||_2$ mit

$$\begin{array}{ccc}
0 & 1 \\
A = \sqrt{2} & 0 \\
\sqrt{2} & 1
\end{array}$$

$$\begin{array}{ccc}
1 \\
b = 1
\end{array}$$

a) Bestimmen Sie die QR – Faktorisierung der Matrix A, wobei $Q \in \mathbb{R}^{3x3}$.

b) Finden Sie die Lösung des Ausgleichsproblems $min_{x \in \mathbb{R}^n} ||b - Ax||_2$ mit Hilfe von QR – Faktorisierung.

Aufgabe 5:

- a) Bestimmen Sie Lagrangsche Elementarpolynome $l_i(x)$ i=0,1,2 für $x_0=-1$ $x_1=2$ und $x_2=3$ nach der Formel aus der Vorlesung.
- b) Bestimmen Sie resultierendes Lagrange Interpolationspolynom für folgende Funktionswerte an Stützstellen $f(x_0) = 0$, $f(x_1) = -1$, $f(x_2) = 5$

Aufgabe 6:

Lösen Sie das Anfangsproblem für y = y(t)

a)
$$y' = t^3 y, y(2) = 4$$

b)
$$y' - y = e^{2t}, y(0) = 0$$

Aufgabe 7:

Zur Lösung des Anfangsproblems $y'(t)=f(t,y(t)),y(t_0)=y_0$ wobei $f\colon \mathbb{R}\times\mathbb{R}^n \to \mathbb{R}^n$, kann man folgendes durch sein Butcher Tableau gegebene Runge – Kutte – Verfahren gegeben

- a) Iterationsvorschrift angeben, die man erhält, wenn man dieses Verfahren zur Lösung der linearen Differentialgleichung $y'(t) = A_{\gamma}(t)$ verwendet.
- b) Zeigen Sie, dass für hinreichend oft stetig differenzierbare Funktionen f der lokale Fehler $|y(t_0+h)-y_1|$ in O(h) liegt.

n = 1 darf angenommen werden